B10 矩形型レーザ・電磁加速複合推進機の加速機構

○山田修(東海大・院),真島悠樹(東海大・院),後藤智輝(東海大・学),堀澤秀之(東海大・工) 船木一幸(JAXA)

> Department of Aeronautical and Astronautical Engineering, Tokai University Hiratsuka, Kanagawa, 259-1292, Japan

Keywords: Laser Ablation Plasma, PPT, Laser-Electromagnetic Hybrid Thrusters

Abstract.

Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumna propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 μ Nsec, 6,200 sec and 22%, respectively.

1. はじめに

近年,目覚しいレーザ技術の進歩により装置の小型・高効率化が進み,それに伴いオンボード型レーザ 推進の開発が急速に進められている.レーザ推進の 利点は比推力の高さと単純な推進システムで,推力 の細密制御性を保ったまま小型化が実現可能である. 本研究ではこの推進システムを電磁加速と組み合わ せ、レーザ・電磁加速複合推進機として更なる推進 性能向上に向けて研究を進めている.この推進方式 はレーザを固体表面に集光することで発生するレー ザアブレーションプラズマに,放電によって発生する ローレンツ力を用いて電磁的に加速排出することで推 力を得る.様々な固体物質を推進剤として利用できる ことから,貯蔵タンクや配管,バルブなどを省くことが 可能でシステムの小型単純化がはかれる.また,種々 の相の推進剤に対してプラズマ化が可能である.

レーザアブレーションプラズマの特徴は,固体から 直接生成されるために数十km/secの高初速と指向性 を持つことなどが挙げられる.このプラズマを電磁気 的加速に用いることで更なる比推力の向上が期待で きる.

図1にレーザ・電磁加速複合推進機の模式図を 示す.固体推進剤と2枚の加速電極,キャパシタと電 源装置,そしてレーザ装置及び光学系と非常に単純 な構成となっている.図2には実験で使用した推進機 ヘッドの写真を示す.この推進機の作動原理は,まず レーザ照射により発生したプラズマが拡散し,電極間 を導通する.次にあらかじめキャパシタに充電された 電荷が電極間を移動することで主放電が発生し,自 己誘起磁場が発生する.プラズマ中では放電によっ て加熱膨張と電離が進み,さらに電場と磁場の相互 作用によって加速され,後方に排出される.

図 2. 推進機ヘッド

本研究では,矩形型レーザ・電磁加速複合推進 機のプラズマ加速特性について,イオン速度計測な らびにプラズマ挙動の高速度観察などによって検討 した.

2. 実験装置及び方法

2.1. 推進性能評価

推進性能を評価するため,推力測定実験,及びマ スショット測定実験を行い,その結果から比推力,推 進効率を算出して比較した.推力測定については本 推進機がパルス作動であるため,1パルスで発生する 推力の時間積分であるインパルスビット(Ibit)を測定し た.実験装置の模式図を図3に示す.捩り振り子式の スラストスタンドの下端に推進機を固定した.レーザを 照射して推力を発生させることでスタンドが力を受け て変位が生じ,これを変位計で計測した.実験前後に 錘を用いてスタンドのキャリブレーションを行

図 3. 推力測定装置の模式図

図 4. ICCD カメラの撮影装置図

図 5. イオン電流測定実験模式図

い,実験で得た変位のデータと比較してインパルスビ ットを算出した.スラストスタンドは全長 450 mm のアル ミ製で,支点には捩りバネ(SDP/SI, 4.7 x 10^-2 Nm/rad)を,変位測定には渦電流式非接触変位計 (EMIC, 503-F, NPA-010,最大レンジ: 1 mm,最小分 解能: 0.5 μ m)を用いた.レーザは Q スイッチ Nd:YAG レーザ(BMI, 5022DNS10, wavelength: λ = 1,064 nm, pulse energy: 266 mJ/pulse, pulse width: 10 nsec)を用い,焦点距離100mmのレンズを用いて固体 推進剤表面に集光する.また,真空チャンバの真空 度は 10⁻⁵Torr とした. また, 推進機の加速度チャネル の長さと高さを変化させて推進性能を計測し, 最適な サイズについて検討した. 検討した加速チャネルのサ イズを表1に示す.

2.2. プラズマ加速特性評価

ファラデーカップを用いたイオン電流計測実験の模 式図を図5に示す.ファラデーカップはグリッドが3枚 で,最前列の1枚目をフロート,2枚目をグランド,3枚 目を-150 V,コレクタを-10 Vとして実験を行った.トリ ガ入力はレーザ照射の散乱光をフォトダイオードで観 測することで取得した.推進機からファラデーカップま での距離を飛行するイオンの平均速度を算出する. 推進機・ファラデーカップ間の距離は210 mmとし,充 電エネルギを変化させた各場合における流入イオン 電流の時間履歴をオシロスコープで記録した.なお, イオンの平均到達時間は,イオン電流がピーク値をと る時刻とみなした.

表1. 比較した加速チャネルサイズ

Electrode height	Channel length	Width
3.0mm	10, 50mm	5.0mm
5.0mm	10, 30, 50mm	5.0mm
10.0mm	10, 50mm	5.0mm

3. 実験結果及び考察

3.1. 加速チャネルサイズが推進性能に及ぼす 影響

図 8 に推進機の加速チャネル変化によるインパル スビットの変化を示す. いずれの場合においても, 充 電エネルギが増大することによりインパルスビットが増 加していることが分かる. 電極高さが 5 mm の各場合 (高さ×長さ=5×10, 5×30, 5×50 mm)で比較すると, 加 速チャネル長が最も長い 5×50 mm の場合が最も高い インパルスビットを示している. 電極高さの影響は、チャネル長が10mm一定の場合と、50mm一定の場合とを比較する.10mmの場合、 電極高3,5,10mmの中で5mmの時が一番インパル ビットが大きく、一方50mmの場合、電極高10mmの 時が有利であった.

次に加速チャネルサイズの変化による比推力の変 化を図 9 に示す.図より、全ての場合において、充電 電圧が増加すれば比推力も増加することが分かる. 加速チャネルが 10×50 の場合において、充電エネル ギ 8.6J のとき最も高い比推力 7200 sec が得られ、この ときの推進効率は 22%であった.

(レーザエネルギ:266mJ/pulse)

(レーザエネルギ:266mJ/pulse)

300 0V 縦倍率x5 Ion current [mA] 1000V 200 2000V 1500V 1000 -100-2 3 8 13 18 Time [µsec]

図 10 100~300 V におけるイオン電流の変化

図11 高電圧作動時のイオン電流時間履歴

3.2. ファラデーカップを用いたイオン電流計測

図 10 はキャパシタに印加する充電エネルギを 0.02から0.19 Jまで変化させ(印加電圧 100~300 V) ファラデーカップ流入イオン電流を計測した結果であ る. 図より、100 Vから200 Vまで充電電圧が上昇する につれピーク値が減少していき、300 Vまで上昇させ るとピーク値の増加と左方向に移動していくという傾 向が見られた. 100 Vの充電電圧では、ピーク値が 8 µsec 付近であるためイオンがほとんど加速されていな いといえる. 充電電圧を 200 V へ増大する過程で、 150~180 V 付近から徐々にイオン電流の増大がみら れるようになった.

図 11 により高い充電電圧作動におけるファ ラデーカップへの流入イオン電流を測定した結 果を示す.比較をしやすくするため、充電エネ ルギが0Jの場合のみ縦軸方向に5倍に拡大し て表示している. 充電エネルギが 0 J のときは イオン電流のピーク値をとる時間が 8 µsec であ ったのに対し,充電エネルギ 1.4 J のときは 5 usec へと手前に移動した. 流入電子排除の不確 実性や放電ノイズによる波形の乱れなどの影響 が大きいため概算ではあるが、これらの結果か らイオンの平均飛行速度を算出すると、充電エ ネルギ0Jで25 km/sec, 5.8 Jで42 km/sec であ った、このことから電磁加速によってイオン速 度が増加しているといえる. また 1.45 J からさ らに充電エネルギが上昇するにつれ、イオン電 流がピークをとる時間は短縮されず、一方でピ ーク値が上昇していく傾向が見られた. すなわ ち、ファラデーカップへの流入イオンが増加し ているといえる.

3.3. ICCD カメラによるプラズマ挙動観察

図 12 に各充電電圧の場合における放電電流の時 間変化と典型的なプラズマ画像を示す.図 13 には, ICCD カメラで撮影したプラズマ挙動を示す.図より, レーザ照射後,推進剤表面に小さなスポットが誘起さ れ,500 nsec までは充電電圧に関わらず同一であっ た.放電電流波形から,放電電流は1000~1500 nsec で最大値をとっている.一方,プラズマの発光は 500 nsec 以降から顕著になり,放電電流の増大に伴い, 発光も強くなっていることが分かる.

図 13.プラズマの挙動

4. まとめ

矩形型レーザ・電磁加速複合推進機の加速特性 について検討し,以下の結論を得た.

1)様々な加速チャネルサイズを比較検討した結果, 比較的大きい場合に推進性能が向上した. 2)ファラデーカップにより計測したイオン飛行速度の 概算値は充電エネルギ0Jで25km/sec,5.8Jで42 km/sec で,電磁気的な加速によってプラズマの速度 が上昇していることが確認できた.

3) ICCD カメラによるプラズマ挙動の観察を行い, プラ ズマの発光強度および挙動が放電電流の大きさに依 存していることが確認された. 今回の実験では ICCD カメラによるプラズマ速度の見積もりには至らなかった が, 今後は継続して実験方法の改良を重ね, 速度計 測を試みる.

参考文献

- Myers, R.M., et al., "Small Satellite Propulsion Options," AIAA Paper 94-2997, June 1994.
- Mueller, J., Thruster Options for Microspacecraft: A Review and Evaluation of Existing Hardware and Emerging Technologies, AIAA Paper 97-3058, July 1997.
- Leifer, S., Overview of NASA's Advanced Propulsion Concepts Activities, AIAA Paper 98-3183, July 1998.
- Micci, M. M., and Ketsdever, A. D. (ed.); Micropropulsion for Small Spacecraft (Prog. Astronautics and Aeronautics 187), American Institute of Aeronautics and Astronautics, 2000.
- Phipps, C., and Luke, J., "Diode Laser-Driven Microthrusters, A New Departure for Micropropulsion", AIAA Journal, Vol.40, No.2, 2002, pp.310-318.
- Gonzales, D., and Baker, R., "Micropropulsion using a Nd:YAG Microchip Laser, Proceedings of SPIE Vol.4760, pp.752 – 765, 2002.
- Pakhomov, A.V., et al., Specific Impulse Study of Ablative Laser Propulsion, AIAA Paper 2001-3663, 2001.
- Horisawa, H., et al., Fundamental Study on Laser Plasma Accelerator for Propulsion Applications, Vacuum, Vol.65 (No.3-4), pp.389-396, 2002.

- Hideyuki Horisawa, et al., Laser-assisted pulsed plasma thruster for space propulsion applications, Applied Physics A, Materials Science & Processing, Vol.81, pp.303 – 310, 2005.
- Horisawa, H., et al., Laser-Electric Hybrid Acceleration System for Space Propulsion Applications, The Review of Laser Engineering, Vol.34, No.6, pp.435- 441, June 2006.6.
- 11. Tomohisa Ono, et al., Measurement of ion acceleration characteristics of a laser-electrostatic hybrid microthruster for space propulsion applications, Vacuum, Volume 83 (1), 2008, pp.213-216.
- Jahn, R.G., Physics of Electric Propulsion: McGraw-Hill, 1968, pp.198-316.
- 13. Burton, R. L., and Turchi, P. J., J. Propulsion and Power 14, pp.716-699 (1998).
- 14. Kawakami, M., et al., AIAA Paper 2003-5028 (2003).
- Kawakami, M., et al., Proc. Asian Joint Conf. on Propulsion and Power 2004, pp.419 – 424 (2004).